An international agricultural company has developed a new cattle feeding ration that is advertised to produce on average more than 52 pounds of weight gain in 30 days. Use the following data and Excel output to address the following questions

1.   What is the set of hypotheses that would be used if the null hypothesis tested is that the mean weight gain is equal to 52 pounds versus and alternative that the mean weight gain exceeds 52?

2.   What is the value of the test statistic to test the null hypothesis that mean weight gain is equal to 52 pounds?

3.   What is the name of the distribution of the test statistic in this case if the null hypothesis is true?

4.   What value must the test statistic be more than in order to reject the null hypothesis at the 5% significance level?

5.   What is the value of the p-value in this case?

6.   What is the decision about the null hypothesis in this case with a significance level of 5%? Answer with a sentence.

7.   What is the conclusion about whether it is appropriate to advertise that the average weight gain in 30 days on the ration exceeds 52 pounds? Answer with a sentence.

Sample Datatesthyp mean ( M )sample sizeCOUNT AS : DIO )Sample mean 53 16657AVERAGE ( AS: DIO )sted dev10 31532- STDEV ( AS :DIO )effect size0 . 1731ABS ( 65 – 67 1 /G8tailsted error2105606G8 / SORT GG )GE- 1- stat0. 554077ABS ( 67 – 651 / 611p – value0 . 292437DIST ( 6 13 12 610 )alpha905IF GIACGIS , &quot; yes &quot; &quot; no &quot; )powert – crit1 713872TINY ( G 15 # 2 6 12 )X – crit55. 60874G5+ GROG1 1call mean53 . 165671 . 1597951 621 – 622 1 / 61 1beta0 . 870985DIST ( 623 612 , TRUE )power0 . 1290151 – 6 24